Identification and Role of Microalgae Found in Catfish (Clarias gariepinus) Cultivation Pond

Keywords: aquaculture, bioindicator, microalgae, natural feed, plankton

Abstract

Microalgae play an essential role in aquaculture as primary producers, serving both as natural feed and as bioindicators for assessing pond water quality. The presence of specific microalgal taxa is crucial for evaluating aquatic conditions and identifying potential natural feed sources. This study aimed to identify microalgal species found in African catfish (Clarias gariepinus) culture ponds and to determine their ecological roles. A descriptive survey method was applied. Water samples were collected using a plankton net from three catfish culture ponds during August–September 2025. Identified microalgae were morphologically classified and analyzed for their potential as bioindicators based on literature review using Palmer’s Pollution Index. The results revealed 16 genera belonging to three divisions: Bacillariophyta (diatoms), Chlorophyta (green algae), and Cyanophyta (blue-green algae). Two genera of Bacillariophyta were identified—Aulacoseira and Synedra. Chlorophyta was the most dominant division, comprising 11 genera: Actinastrum, Coelastrum, Dictyosphaerium, Golenkinia, Micractinium, Oocystis, Pandorina, Pediastrum, Scenedesmus, Staurastrum, and Ulothrix. Cyanophyta included three genera—Anabaena, Aphanocapsa, and Spirulina. Among these, Scenedesmus and Pediastrum (Chlorophyta) are commonly used as natural feed, whereas Cyanophyta members are often utilized as water-quality bioindicators. The diversity and abundance of microalgae observed in the catfish ponds indicate organic enrichment, yet they also provide valuable potential as natural feed sources.

References

Al Mamun, M., Hossain, M. A., Saha, J., Khan, S., Akter, T., & Banu, M. R. (2023). Effects of spirulina Spirulina platensis meal as a feed additive on growth performance and immunological response of Gangetic mystus Mystus cavasius. Aquaculture Reports, 30, 101553. https://doi.org/10.1016/j.aqrep.2023.101553

Arfiati, D., Inayah, Z. N., Lailiyah, S., & Dina, K. F. (2021). Plankton analysis in the ponds of catfish (Clarias sp.) and nile tilapia (Oreochromis niloticus). JFMR (Journal of Fisheries and Marine Research), 5(1), 84–90. https://doi.org/10.21776/ub.jfmr.2021.005.01.13

Belfiore, A. P., Buley, R. P., Fernandez-Figueroa, E. G., Gladfelter, M. F., & Wilson, A. E. (2021). Zooplankton as an alternative method for controlling phytoplankton in catfish pond aquaculture. Aquaculture Reports, 21, 100897. https://doi.org/10.1016/j.aqrep.2021.100897

Bellinger, E. G., & Sigee, D. C. (2010). Freshwater algae: identification, enumeration and use as bioindicators (1st ed.). Wiley-Blackwell; Chichester UK.

Bulut, O., Köse, I. E., Sönmez, Ç., & Öktem, H. A. (2024). Antioxidant activity of Micractinium sp. (Chlorophyta) extracts against H2O2 induced oxidative stress in human breast adenocarcinoma cells. Scientific reports, 14(1), 27593. https://doi.org/10.21203/rs.3.rs-4690459/v1

Buwono, N. R., & Nurhasanah, R. Q. (2018). Studi Pertumbuhan Populasi Spirulina sp. pada Skala Kultur yang Berbeda. Jurnal Ilmiah Perikanan dan Kelautan, 10(1), 26-33.

Dobrescu, C. M., Turtureanu, A., & Dorobat, L. M. (2023). Algae as biological indicators of water pollution. Journal of Danubian Studies and Research, 13(1), 32–38.

Essa, D. I., Elshobary, M. E., Attiah, A. M., Salem, Z. E., Keshta, A. E., & Edokpayi, J. N. (2024). Assessing phytoplankton populations and their relation to water parameters as early alerts and biological indicators of the aquatic pollution. Ecological Indicators, 159, 111721. https://doi.org/10.1016/j.ecolind.2024.111721

Gianello, D., Ávila-Hernández, E., Aguer, I., & Crettaz-Minaglia, M. C. (2019). Water quality assessment of a temperate urban lagoon using physico-chemical and biological indicators. SN Applied Sciences, 1(5), 470. https://doi.org/10.1007/s42452-019-0469-5

Khalil, S., Mahnashi, M. H., Hussain, M., Zafar, N., Khan, F. S., Afzal, U., Shah, G. M., Niazi, U. M., Awis, M., & Irfan, M. (2021). Exploration and determination of algal role as bioindicator to evaluate water quality–probing fresh water algae. Saudi Journal of Biological Sciences, 28(10), 5728–5737. https://doi.org/10.1016/j.sjbs.2021.06.004

Khumaidi, A., Muqsith, A., Wafi, A., & Aiysah Jamil, S. N. (2025). Optimal Stocking Density of Catfish (Clarias gariepinus) Cultivated in Round Pond at a Small Scale. Journal of Aquaculture & Fish Health, 14(2), 202–210 https://doi.org/10.20473/jafh.v14i2.65654

Le, T. T., Luong, Q. D., Vo, T. T. H., & Nguyen, V. T. (2018). A case study of phytoplankton used as a biological index for water quality assessment of Nhu Y river, Thua Thien-Hue. Vietnam Journal of Science, Technology and Engineering, 60(4), 45–51. https://doi.org/10.31276/VJSTE.60(4).45-51

Mahmudi, M., Arsad, S., Lusiana, E. D., Musa, M., Fitrianesia, F., Ramadhan, S. F., Arif, A. R., Savitri, F. R., Dewinta, A. A., & Ongkosongo, A. D. (2023). Microalgae diversity in varying habitat characteristics in Pasuruan and Sidoarjo coastal areas, East Java, Indonesia. Biodiversitas: Journal of Biological Diversity, 24(8), 4418–4426. https://doi.org/10.13057/biodiv/d240823

Masithah, E. D. & Islamy, R. A. (2023). Checklist of freshwater periphytic diatoms in the midstream of Brantas River, East Java. Biodiversitas journal of Biological Diversity, 24(6), 3269–3281. https://doi.org/10.13057/biodiv/d240621

Mohanty, T. R., Tiwari, N. K., Kumari, S., Ray, A., Manna, R. K., Bayen, S., Roy, S., Gupta, S. D., Ramteka, M. H., Swain, H. S., Bhor, M., & Das, B. K. (2022). Variation of Aulacoseira granulata as an eco-pollution indicator in subtropical large river Ganga in India: A multivariate analytical approach. Environmental Science and Pollution Research, 29(25), 37498–37512. https://doi.org/10.1007/s11356-021-18096-9

Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C., Al-Jabri, H., Vatland, A. K., & Kumar, G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1–20. https://doi.org/10.1016/j.jbiotec.2021.09.003

Neneng, L., Louisa, K., Yuliana, Y., Nafisah, Z., & Noerdjito, D. R. (2025). Biodiversity and distribution of freshwater microalgae from the black-water ecosystem of Rungan River, Central Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 26(4), 1789-1798. https://doi.org/10.13057/biodiv/d260428

Prescott, G. W. (1954). How to know the freshwater algae. Wm C. Brown Company Publishers; Dubuque.

Pröschold, T., Pitsch, G., & Darienko, T. (2020). Micractinium tetrahymenae (Trebouxiophyceae, Chlorophyta), a new endosymbiont isolated from ciliates. Diversity, 12(5), 200. https://doi.org/10.3390/d12050200

Rahman, A., Haeruddin, H., & Prakoso, K. (2025). The occurrences of harmful algal blooms (habs) species and trophic status update in Kedung Ombo Reservoir. Jurnal Ilmiah Perikanan dan Kelautan, 17(1), 40–52. https://doi.org/10.20473/jipk.vi.55767

Raji, A. A., Alaba, P. A., Yusuf, H., Bakar, N. H. A., Taufek, N. M., Muin, H., Alias, Z., Milow, P., & Razak, S. A. (2018). Fishmeal replacement with Spirulina Platensis and Chlorella vulgaris in African catfish (Clarias gariepinus) diet: Effect on antioxidant enzyme activities and haematological parameters. Research in veterinary science, 119, 67–75. https://doi.org/10.1016/j.rvsc.2018.05.013

Rauytanapanit, M., Janchot, K., Kusolkumbot, P., Sirisattha, S., Waditee-Sirisattha, R., & Praneenararat, T. (2019). Nutrient deprivation-associated changes in green microalga Coelastrum sp. TISTR 9501RE enhanced potent antioxidant carotenoids. Marine Drugs, 17(6), 328. https://doi.org/10.3390/md17060328

Sahab, H. M., Omer, H., Ismail, A., & Mohamed, N. A. (2018). Diversity of mix microalgae in fish tanks under different weather conditions. Journal of Bioscience and Applied Research, 4(3), 278–295. https://doi.org/10.21608/jbaar.2018.155803

Salem, Z., Ghobara, M., & El Nahrawy, A. A. (2017). Spatio-temporal evaluation of the surface water quality in the middle Nile Delta using Palmer’s algal pollution index. Egyptian Journal of Basic and Applied Sciences, 4(3), 219–226. https://doi.org/10.1016/j.ejbas.2017.05.003

Shetty, K., & Gulimane, K. (2023). Application of microalgal diversity in assessing the water quality of freshwater ponds. Environmental Monitoring and Assessment, 195(5), 595. https://doi.org/10.1007/s10661-023-11116-w

Skifa, I., Chauchat, N., Cocquet, P. H., & Le Guer, Y. (2024). Microalgae cultivation in raceway ponds: advances, challenges, and hydrodynamic considerations. EFB Bioeconomy Journal, 100073. https://doi.org/10.1016/j.bioeco.2024.100073

Uda, S. K., Jaya, A., Adam, C., & Fatiqin, A. (2024). Exploratory study on the genus diversity of tropical paludi-microalgae as a potential source of human nutrition and other products. Mires and Peat, 31, 16. https://doi.org/10.19189/MaP.2023.OMB.Sc.2457053

Van Rensburg, S. J., Barnard, S., & Booyens, S. (2019). Comparison of phytoplankton assemblages in two differentially polluted streams in the Middle Vaal Catchment, South Africa. South African Journal of Botany, 125, 234–243. https://doi.org/10.1016/j.sajb.2019.07.036

Verdegem, M., Buschmann, A. H., Latt, U. W., Dalsgaard, A. J., & Lovatelli, A. (2023). The contribution of aquaculture systems to global aquaculture production. Journal of the World Aquaculture Society, 54(2), 206-250. https://doi.org/10.1111/jwas.12963

Vuuren, S. J. V. (2006). Easy identification of the most common freshwater algae: a guide for the identification of microscopic algae in South African freshwaters. Resource Quality Services (RQS); Department of Water Affairs and Forestry (DWAF) and North-West University (NWU).

Zulkefli, N. S., & Hwang, S. J. (2020). Heterocyst development and diazotrophic growth of Anabaena variabilis under different nitrogen availability. Life, 10(11), 279. https://doi.org/10.3390/life10110279

Published
2025-11-30
Section
Research Articles