Inovasi Reaktor Pirolisis Sampah Plastik Campuran Sampah Perkotaan Dengan Tabung Mendatar Dan Kondensor Bertingkat Kapasitas 50 Kg Self-Sufficient
Abstract
The management of urban plastic waste poses a significant challenge for the global environment and economy. An innovative horizontal tube pyrolysis reactor with a tiered condensation system, designed for a capacity of 50 kg, has been developed to convert mixed plastic waste into liquid fuels such as diesel, kerosene, and gasoline through an efficient and environmentally friendly pyrolysis process. The reactor, with a diameter of 760 mm and a length of 1200 mm, maximizes heat distribution to ensure uniform heating without requiring mechanical rotation or stirring. External heating is maintained at a temperature range of 300°C to 350°C under anaerobic conditions to prevent direct combustion. System trials demonstrated that the conversion of plastic waste to liquid fuel products can achieve an efficiency of up to 70% of the total input mass, yielding an average of 50% liquid fuel fractions, 15% solid residue, and 35% pyrolysis gas. Analysis of the liquid fuel quality indicates hydrocarbon content comparable to conventional fuels, with potential applications in internal combustion engines. The system is designed to be self-sufficient, utilizing pyrolysis gas to sustain the process and thereby reducing external energy requirements by up to 30%. These findings highlight the significant potential of horizontal tube-based pyrolysis systems in efficiently reducing urban plastic waste while providing alternative fuel sources. This technology can thus support sustainable waste management efforts and contribute to the transition toward renewable energy.
Downloads
References
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
Armenise, S., SyieLuing, W., Ramírez-Velásquez, J. M., Launay, F., Wuebben, D., Ngadi, N., ... & Muñoz, M. (2021). Plastic waste recycling via pyrolysis: A bibliometric survey and literature review. Journal of Analytical and Applied Pyrolysis, 158, 105265.
Babaremu, K. O., Ukoba, B. C., & Olajide, A. M. (2022). Sustainable plastic waste management in a circular economy. Heliyon, 8(7), e09984. https://doi.org/10.1016/j.heliyon.2022.e09984
Chang, S. H. (2023). Plastic waste as pyrolysis feedstock for plastic oil production: a review. Science of The Total Environment, 877, 162719.
Dang, S., Sriprateep, S., Srichat, S., Areeprasert, S., & Ratanapisit, C. (2020). Gasification of plastic waste for synthesis gas production. Energy Reports, 6, 202–207. https://doi.org/10.1016/j.egyr.2019.08.043
Faisal, F., Shahbudin, S., Rasul, M. G., & Asadullah, M. (2024). Optimization of process parameters to maximise the oil yield from pyrolysis of mixed waste plastics. Sustainability, 16(7), 2619. https://doi.org/10.3390/su16072619
Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768–771. https://doi.org/10.1126/science.1260352
Kabeyi, M. J. B., Mugaa, C. K., & Maina, P. (2023). Review and design overview of plastic waste-to-pyrolysis oil conversion with implications on the energy transition. Journal of Energy, 2023(1), 1–25. https://doi.org/10.1155/2023/1821129
Kaimal, V. K., & Vijayabalan, P. (2016). A study on synthesis of energy fuel from waste plastic and assessment of its potential as an alternative fuel for diesel engines. Waste management, 51, 91-96.
Kartik, S., Balsora, H. K., Sharma, M., Saptoro, A., Jain, R. K., Joshi, J. B., & Sharma, A. (2022). Valorization of plastic wastes for production of fuels and value-added chemicals through pyrolysis–A review. Thermal Science and Engineering Progress, 32, 101316.
Klaimy, S., Lamonier, J. F., Casetta, M., Heymans, S., & Duquesne, S. (2021). Recycling of plastic waste using flash pyrolysis–Effect of mixture composition. Polymer degradation and Stability, 187, 109540.
Mangesh, V. L., & Suryawanshi, S. (2020). Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. Journal of Cleaner Production, 246, 119066. https://doi.org/10.1016/j.jclepro.2019.119066
Mong, G. R., Zhengwei, L., Hing, C. L., & Wenhui, S. (2024). A review on plastic waste valorisation to advanced materials: Solutions and technologies to curb plastic waste pollution. Journal of Cleaner Production, 434, 140180. https://doi.org/10.1016/j.jclepro.2023.140180
Nalluri, P., Kumar, P. P., & Sastry, M. C. (2021). Experimental study on catalytic pyrolysis of plastic waste using low cost catalyst. Materials Today: Proceedings, 45, 7216-7221.
Owusu, P. A., Banadda, N., Zziwa, A., Seay, J., & Kiggundu, N. (2018). Reverse engineering of plastic waste into useful fuel products. Journal of Analytical and Applied Pyrolysis, 130, 285-293.
Pandey, P., Dhiman, M., Kansal, A., & Subudhi, S. P. (2023). Plastic waste management for sustainable environment: techniques and approaches. Waste Disposal & Sustainable Energy, 5(2), 205-222.
Parku, G. K., Farid, S., Bashir, S., & Kumar, A. (2020). Pyrolysis of waste polypropylene plastics for energy recovery: Influence of heating rate and vacuum conditions on composition of fuel product. Fuel Processing Technology, 209, 106522. https://doi.org/10.1016/j.fuproc.2020.106522
Qureshi, M. S., Bhandari, V., Radmanesh, H., & Choudhury, M. (2020). Pyrolysis of plastic waste: Opportunities and challenges. Journal of Analytical and Applied Pyrolysis, 152, 104804. https://doi.org/10.1016/j.jaap.2020.104804
Rahman, M. H., Hasanuzzaman, M., Chowdhury, N. U., & Miah, M. N. (2023). Pyrolysis of waste plastics into fuels and chemicals: A review. Renewable and Sustainable Energy Reviews, 188, 113799. https://doi.org/10.1016/j.rser.2023.113799
Saebea, D., Ruengrit, P., Arpornwichanop, A., & Patcharavorachot, Y. (2020). Gasification of plastic waste for synthesis gas production. Energy Reports, 6, 202-207.
Sogancioglu, M., Yildirim, B., Kaya, G. S., & Yilmaz, Y. (2017). A comparative study on waste plastics pyrolysis liquid products quantity and energy recovery potential. Energy Procedia, 118, 221–226. https://doi.org/10.1016/j.egypro.2017.07.020
Soni, V. K., Singh, G., Vijayan, B. K., Chopra, A., Kapur, G. S., & Ramakumar, S. S. V. (2021). Thermochemical recycling of waste plastics by pyrolysis: a review. Energy & Fuels, 35(16), 12763-12808.
Suhartono, S., Kurniawan, H., Sulastri, S., & Susanto, S. (2022). Characteristics study of liquid fuel from pyrolysis of polyethylene plastic waste. Jurnal Teknologi, 84(4), 57–64. https://doi.org/10.11113/jurnalteknologi.v84.17517
Thompson, R. C., Moore, C. J., Vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: Current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153–2166. https://doi.org/10.1098/rstb.2009.0053
Vaishnavi, M., Ranjith, K., Bhupathi, M., & Raman, R. (2023). A critical review of the correlative effect of process parameters on pyrolysis of plastic wastes. Journal of Analytical and Applied Pyrolysis, 170, 105907. https://doi.org/10.1016/j.jaap.2023.105907
Zallaya, S., El Achkar, J. H., Abou Chacra, A., Shatila, S., El Akhdar, J., & Daher, Y. (2023). Steam gasification modeling of polyethylene (PE) and polyethylene terephthalate (PET) wastes: A case study. Chemical Engineering Science, 267, 118340.
Copyright (c) 2024 Utis Sutisna, Bambang Sugiantoro, Muhamad Soleh, Nana Kariada Tri Martuti, Widowati Widowati, Sunyoto Sunyoto

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.